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Abstract:  The “Comparisonics” sound-matching algorithm computes signatures to 
characterize audio data and compares the signatures to measure the similarity of sounds.  
This algorithm is general purpose: it can compare any sounds and can monitor sounds 
from any machine.  After a baseline recording is characterized, signatures are derived 
from the current sound and compared in real time with the baseline signatures.  Similarity 
scores are computed continuously, reflecting the similarity of the current sound to the 
baseline, and an alert can be given if the similarity falls below a threshold.  In addition, 
the current sound can be compared with known “error” sounds to identify specific faults.  
This algorithm can operate in a wireless sensor network and be deployed in a factory or 
on a ship to monitor an unlimited variety of machinery. 
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Introduction:  A human listener accustomed to the “normal” sound of a machine readily 
detects changes in the sound.  It is well known that the sounds made by machines can 
indicate the health of the machinery.  A change in sound may portend trouble and warrant 
investigation by skilled maintenance personnel.  However, a change may go unnoticed by 
human listeners due to unfamiliarity with the usual sound, or because the change is 
gradual, sporadic, or masked by the din of neighboring machinery.  If the machine is 
remote and unsupervised, there is no one to listen. 
 
There is a great need for computers to listen to machinery and many millions of machines 
could be usefully monitored; however, a robust low-cost solution has been unavailable.  
Let us consider some existing approaches: 
 



• amplitude monitoring – a simple device detects whether the sound is louder or 
softer than expected; it is a low-cost, general-purpose solution but it does not 
perform any frequency analysis; it detects changes in the quantity, but not the 
quality, of sound 

 
• machine-dependent pattern recognition – a custom pattern-recognition system is 

developed to monitor the sounds from a particular machine; accurate monitoring 
may be achieved for this machine but the cost to develop the system is high 

 
• machine-class-dependent pattern recognition – characteristics of a particular class 

of machines (for example, rotating machinery) are exploited to monitor machines 
belonging to the class; the cost is high but not as high as developing a custom 
pattern-recognition system for each machine in the class 

 
The current situation, as we see it, is a choice between low-cost amplitude monitoring 
and high-cost pattern recognition.  The semi-automated solution in which trained humans 
analyze FFT output belongs to the latter category. 
 
We have developed a solution that might be considered “machine-independent pattern 
recognition.”  Its cornerstone is a general-purpose “sound-matching” algorithm that 
compares any sounds and measures their similarity.  This algorithm can listen to and 
compare sounds from any type of machine.  After characterizing a baseline recording of a 
machine, it compares the current sound with the baseline to detect changes in real time. 
 
The algorithm is ideally deployed in a wireless sensor network, where each wireless node 
is equipped with a microphone.  The wireless nodes can be easily placed by personnel 
throughout a factory or ship, near machinery to be monitored.  Although the algorithm 
can compare vibration data, we avoid the use of accelerometers, which are more 
expensive and more difficult to install than microphones.  After some initial 
configuration, the system begins real-time monitoring of sounds. 
 
By employing a general-purpose sound-comparison algorithm and inexpensive, easy-to-
install wireless nodes with microphones, the goal of robust, low-cost sound monitoring 
can be achieved. 
 
 
Sound Matching:  The Comparisonics sound-matching algorithm was developed by 
S. V. Rice in 1997.  The initial goal was to develop a method for “content-based” 
retrieval of sound effects.  Previously, sound-effect collections could be searched only by 
entering a text description for each sound and then performing a keyword search of the 
text descriptions.  In Rice’s “sounds-like search,” a user can specify any example sound 
and the system automatically retrieves perceptually similar sounds.  This unique search 
capability has been incorporated into FindSounds.com, the first Web search engine for 
sound effects [1,2]. 
 



The sound-matching algorithm processes the uncompressed sequence of sample values in 
any digital audio recording, provided the duration of the recording is at least ten 
milliseconds and the sample rate is at least 8 kHz.  The algorithm characterizes the 
sounds in the recording by a “signature,” which is a 16-byte quantity that encodes a 
vector of perceptual features.  Given any two signatures, the algorithm returns a score 
ranging from 0 (least similar) to 100 (most similar) describing the similarity of the 
recordings from which the signatures are derived.  In assigning a score, the algorithm 
emulates the human perception of sound similarity: the higher the score, the more a 
human listener will perceive the two recordings to be alike.  Nearly all of the perceptual 
features are characterizations of frequency content and are extracted from the time 
domain by a proprietary transform.  A nonlinear distance measure in the multi-
dimensional feature space is used to compute similarity scores. 
 
The sound-matching algorithm was designed to produce a meaningful measure of sound 
similarity for all audible sounds.  It is general purpose, not trained to a particular class of 
sounds.  For sound-effects retrieval, it is impractical to develop a custom algorithm for 
each type of sound effect: rain, sirens, elephants, etc.  Likewise, we cannot afford to build 
a custom algorithm for each machine. 
 
The efficiency of the Comparisonics algorithm is notable.  On a modern personal 
computer, the time required to compute a signature is less than one percent of the 
duration of the recording; thus, signatures can easily be computed in real time.  The time 
required to compare two signatures and compute a similarity score is less than 0.5 
microseconds.  A signature occupies only 16 bytes for efficient manipulation and storage.  
(Contrast this with the storage required for FFT output, which is measured in kilobytes.) 
 
One signature can be computed for a long recording and represents the “average” of the 
sounds in the recording.  For machinery monitoring, it is desirable to divide the recording 
into consecutive 100-millisecond intervals and compute one signature to characterize 
each interval.  This sequence of signatures can be compared with another sequence of 
signatures if the temporal ordering of sounds is to be matched.  However, in our standard 
implementation, we ignore the temporal sequence. 
 
Let { }nsssS ,,, 21 K=  be an unordered set of n signatures derived from one or more 
baseline recordings of a machine.  We apply a clustering algorithm to find a set of 
signatures { } ScccC m ⊆= ,,, 21 K  representing the distinct sounds in the recording, where 
each ic  is the exemplar of a cluster of perceptually similar sounds.  In this way, the set C 
characterizes the natural variations of the “normal” sound of the machine.  These 
variations may occur in one operating mode or be produced by different modes (for 
example, the cycles of a washing machine). 
 
To monitor the sound of the machine in real time, a signature s is computed for the 
current 100-millisecond interval and the similarity of s and ic  is computed for each 

mi ,,2,1 K= .  The maximum similarity score represents the best match between the 
current sound and the baseline recording.  If the maximum score falls below the value of 



a threshold parameter τ, then an alert can be raised immediately, or the alert might be 
issued only after the maximum score has fallen below the threshold for multiple time 
intervals.  In Fig. 1, the maximum score is plotted versus time for a recording of a 
compressor.  The score declines as the sound of the compressor deviates from the 
baseline recording. 
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Fig. 1.  Monitoring the Sound of a Compressor 
 
 
The choice of τ can be determined manually through experimentation or automatically by 
comparing the signatures derived from one baseline recording with the exemplars of 
another baseline recording.  In the latter approach, τ is chosen to be less than the 
observed scores. 
 
The algorithm currently does not factor in the relative “strengths” of the clusters.  That is, 
some clusters represent more sounds in the baseline recording than others.  However, this 
can be considered to determine whether the current sound is rare or common in the 
baseline recording. 
 
The algorithm can characterize not only baseline recordings but also recordings of known 
“error” sounds.  If the current sound deviates from the baseline, it can be compared with 
the signatures of faults in an attempt to diagnose the problem. 
 
 
Testing:  The robustness of the Comparisonics sound-matching algorithm has been 
demonstrated for a wide variety of sounds in its application to sound-effects retrieval.  
FindSounds.com is utilized by more than 150,000 users per month. 
 
A collection of recordings of 600 different machines has been assembled from sound-
effects compilations for testing the machinery monitoring application.  The sound-
matching algorithm was not modified or specially trained for this test, yet it reliably 
matches the sounds in this collection.  The diversity of this collection demonstrates the 
general-purpose nature of the algorithm.  Below are some of the sound sources in this 
collection: 
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• acetylene torch 
• air conditioner 
• anesthesia 

ventilator 
• arc welder 
• band saw 
• boiler 
• cement mixer 
• centrifuge 
• clothes dryer 
• clothes washer 
• compressor 
• conveyor belt 
• drill press 

• fan 
• furnace 
• gears 
• generator 
• grinder 
• lathe 
• microwave oven 
• milling machine 
• motor 
• oxygen mask 
• packing machine 
• photocopier 
• pile driver 
• planer 

• printing press 
• pulse oximeter 
• pump 
• respirator 
• stamping 

machine 
• steel cutter 
• table saw 
• threshing 

machine 
• transformer 
• turbine engine 
• winch 

 
In addition, the test collection includes sounds from vehicles: airplane, bus, car, elevator, 
ferry, helicopter, motorcycle, rollercoaster, ship, subway, tank, tractor, train, and truck. 
 
Proof of concept has been demonstrated using personal computers.  However, it is 
impractical to place a PC next to each machine to monitor.  The next step is to port the 
sound-matching algorithm to a wireless sensor platform and conduct tests of the 
algorithm on this platform.  A project is underway to implement and test the algorithm on 
Crossbow Technology’s MICA Mote platform [3]. 
 
 
Conclusion:  Recent issues of the Communications of the ACM and IEEE Computer are 
devoted to the burgeoning field of wireless sensor networks [4,5].  Technologies for 
monitoring are rapidly evolving.  For machinery monitoring, comparing audio and 
vibration signals is a challenge.  A general-purpose sound-matching algorithm avoids the 
costs and complexities of custom development, and deployed on a wireless platform, 
provides a cost-effective solution for monitoring the sounds of an unlimited variety of 
machinery. 
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